On Cocycle Actions of Non-commutative Bernoulli Shifts

نویسنده

  • TOMOHIRO HAYASHI
چکیده

In this paper we investigate the cocycle actions of non-commutative Bernoulli shifts for a countable discrete group G on the AFD II1-factor N = ⊗g∈GMn(C) or ⊗g∈GR, where R is the AFD II1-factor. We show that if G contains some non-amenable exact group, then the fixed point algebra of any its cocycle action is always atomic. We also give another proof of Popa’s cocycle vanishing theorem [15] in this special case; We will show that if G has relative property T and contains some non-amenable exact group, then all unitary cocycles are cohomologous to characters. In our proof, Ozawa’s theorem[11] and Popa’s argument[16] play a crucial role.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cocycle and Orbit Equivalence Superrigidity for Bernoulli Actions of Kazhdan Groups

We prove that if a countable discrete group Γ contains an infinite normal subgroup with the relative property (T) (e.g. Γ = SL(2,Z) ⋉Z, or Γ = H × H with H an infinite Kazhdan group and H arbitrary) and V is a closed subgroup of the group of unitaries of a finite von Neumann algebra (e.g. V countable discrete, or separable compact), then any V-valued measurable cocycle for a Bernoulli Γ-action ...

متن کامل

COCYCLE SUPERRIGIDITY FOR MALLEABLE ACTIONS WITH SPECTRAL GAP Preliminary version

Let Γ y X be a measure preserving (m.p.) action of a discrete group Γ on a probability measure space (X,μ) and H ⊂ Γ a non-amenable subgroup with commutant H = {g ∈ Γ | gh = hg, ∀h ∈ H} infinite. We prove that if the action satisfies a malleability condition on HH, is weak mixing on H and has stable spectral gap on H (e.g. if the action is Bernoulli on HH), then any cocycle with values in a Pol...

متن کامل

On the Superrigidity of Malleable Actions with Spectral Gap

We prove that if a countable group Γ contains a non-amenable subgroup with centralizer infinite and “weakly normal” in Γ (e.g. if Γ is non-amenable and has infinite center or is a product of infinite groups) then any measure preserving Γ-action on a probability space which satisfies certain malleability, spectral gap and weak mixing conditions is cocycle superrigid. We also show that if Γ y X i...

متن کامل

Bernoulli Actions of Low Rank Lattices and Countable Borel Equivalence Relations

Using Zimmer’s cocycle superrigidity theorems [27], we obtain Borel nonreducibility results for orbit equivalence relations arising from Bernoulli actions of suitably chosen low-rank lattices in real and p-adic Lie groups. In particular, for p a prime, let Ep (respectively Fp) denote the orbit equivalence relation arising from any nontrivial Bernoulli action of PSL2(Z[ √ p ]) (respectively PSL2...

متن کامل

Geometry of the Frenkel-Kac-Segal cocycle

We present an analysis of the cocycle appearing in the vertex operator representation of simply-laced, affine, Kac-Moody algebras. We prove that it can be described in the context of R-commutative geometry, where R is a Yang-Baxter operator, as a strong R-commutative algebra. We comment on the Hochschild, cyclic and dihedral homology theories that appear in non-commutative geometry and their po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005